间你的研究怎么样了?”
自从ABC猜想被证明之后,望月新一就将研究方向转向了连续统势领域。
所谓的连续统势,表述起来很简单,指的是实数集合中到底含有多少个实数?或者说,实数集合的势到底是多大?
连续统势确定问题是集合论中最古老最基本最自然的一个问题。
对于(无穷)集合来讲,两个集合等势的充分必要条件是它们之间存在一个一一对应或者双射。
众所周知,自然数可以被用来作为有限集合所含元素个数的多少的一种度量:两个有限集合等势的充分必要条件是它们含有相同个数的元素。
因此,每一个有限集合的势都唯一地由一个自然数来确定。
类似的,无限集合的势也都唯一地由一个基数?α来确定。
最小的无穷基数是?0 ,它代表着全体自然数所组成的集合的势。
?0之后的第一个基数是?1,再其后的第一个基数是?2,然后是?3,等等……
一般来说,紧接着基数?α之后的基数是?α 1:两个基数?α和?β的大小之比较由它们的下标(序数α和β)的长短来唯一确定。
每一个自然数n都是一个比? 0 小的基数.对于无限基数来说,?0<?1<? 2<?3<……
tor于1873年12月证明了由全体实数所组成的集合(即连续统)的势至少是?1。
现在问题出来了:到底哪一个基数?α是连续统的势呢?
是?1?还是?2,?3,还是别的一个什么?α?
tor 当年曾经猜想:连续统的势是第一个不可数的基数?1。
这就是tor连续统猜想,也是希尔伯特(Hilbert)1900年提出的23个问题中的第一问题。
望月新一摇了摇头,苦笑道:“我现在只是有个头绪,想要真正搞明白这个问题,估计还要很长时间呢。”
接着,望月新一又和庞学林聊了一下近期庞氏几何研讨班的问题,这才告辞离去。